import Unicorn2
This commit is contained in:
@ -17,10 +17,13 @@
|
||||
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef _EXEC_ALL_H_
|
||||
#define _EXEC_ALL_H_
|
||||
#ifndef EXEC_ALL_H
|
||||
#define EXEC_ALL_H
|
||||
|
||||
#include "qemu-common.h"
|
||||
#include "hw/core/cpu.h"
|
||||
#include "exec/tb-context.h"
|
||||
#include "exec/cpu_ldst.h"
|
||||
#include "sysemu/cpus.h"
|
||||
|
||||
/* allow to see translation results - the slowdown should be negligible, so we leave it */
|
||||
#define DEBUG_DISAS
|
||||
@ -28,289 +31,372 @@
|
||||
/* Page tracking code uses ram addresses in system mode, and virtual
|
||||
addresses in userspace mode. Define tb_page_addr_t to be an appropriate
|
||||
type. */
|
||||
#if defined(CONFIG_USER_ONLY)
|
||||
typedef abi_ulong tb_page_addr_t;
|
||||
#else
|
||||
typedef ram_addr_t tb_page_addr_t;
|
||||
#endif
|
||||
|
||||
/* is_jmp field values */
|
||||
#define DISAS_NEXT 0 /* next instruction can be analyzed */
|
||||
#define DISAS_JUMP 1 /* only pc was modified dynamically */
|
||||
#define DISAS_UPDATE 2 /* cpu state was modified dynamically */
|
||||
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
|
||||
|
||||
struct TranslationBlock;
|
||||
typedef struct TranslationBlock TranslationBlock;
|
||||
|
||||
/* XXX: make safe guess about sizes */
|
||||
#define MAX_OP_PER_INSTR 266
|
||||
|
||||
#if HOST_LONG_BITS == 32
|
||||
#define MAX_OPC_PARAM_PER_ARG 2
|
||||
#else
|
||||
#define MAX_OPC_PARAM_PER_ARG 1
|
||||
#endif
|
||||
#define MAX_OPC_PARAM_IARGS 5
|
||||
#define MAX_OPC_PARAM_OARGS 1
|
||||
#define MAX_OPC_PARAM_ARGS (MAX_OPC_PARAM_IARGS + MAX_OPC_PARAM_OARGS)
|
||||
|
||||
/* A Call op needs up to 4 + 2N parameters on 32-bit archs,
|
||||
* and up to 4 + N parameters on 64-bit archs
|
||||
* (N = number of input arguments + output arguments). */
|
||||
#define MAX_OPC_PARAM (4 + (MAX_OPC_PARAM_PER_ARG * MAX_OPC_PARAM_ARGS))
|
||||
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
|
||||
|
||||
/* Maximum size a TCG op can expand to. This is complicated because a
|
||||
single op may require several host instructions and register reloads.
|
||||
For now take a wild guess at 192 bytes, which should allow at least
|
||||
a couple of fixup instructions per argument. */
|
||||
#define TCG_MAX_OP_SIZE 192
|
||||
|
||||
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
|
||||
#define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
|
||||
|
||||
#include "qemu/log.h"
|
||||
|
||||
void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb);
|
||||
void gen_intermediate_code_pc(CPUArchState *env, struct TranslationBlock *tb);
|
||||
void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
|
||||
int pc_pos);
|
||||
bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
|
||||
void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns);
|
||||
void restore_state_to_opc(CPUArchState *env, TranslationBlock *tb,
|
||||
target_ulong *data);
|
||||
|
||||
void QEMU_NORETURN cpu_resume_from_signal(CPUState *cpu, void *puc);
|
||||
/**
|
||||
* cpu_restore_state:
|
||||
* @cpu: the vCPU state is to be restore to
|
||||
* @searched_pc: the host PC the fault occurred at
|
||||
* @will_exit: true if the TB executed will be interrupted after some
|
||||
cpu adjustments. Required for maintaining the correct
|
||||
icount valus
|
||||
* @return: true if state was restored, false otherwise
|
||||
*
|
||||
* Attempt to restore the state for a fault occurring in translated
|
||||
* code. If the searched_pc is not in translated code no state is
|
||||
* restored and the function returns false.
|
||||
*/
|
||||
bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit);
|
||||
|
||||
void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
|
||||
void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
|
||||
TranslationBlock *tb_gen_code(CPUState *cpu,
|
||||
target_ulong pc, target_ulong cs_base, int flags,
|
||||
target_ulong pc, target_ulong cs_base,
|
||||
uint32_t flags,
|
||||
int cflags);
|
||||
void cpu_exec_init(CPUArchState *env, void *opaque);
|
||||
|
||||
void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
|
||||
void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
|
||||
void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
|
||||
|
||||
/**
|
||||
* cpu_loop_exit_requested:
|
||||
* @cpu: The CPU state to be tested
|
||||
*
|
||||
* Indicate if somebody asked for a return of the CPU to the main loop
|
||||
* (e.g., via cpu_exit() or cpu_interrupt()).
|
||||
*
|
||||
* This is helpful for architectures that support interruptible
|
||||
* instructions. After writing back all state to registers/memory, this
|
||||
* call can be used to check if it makes sense to return to the main loop
|
||||
* or to continue executing the interruptible instruction.
|
||||
*/
|
||||
static inline bool cpu_loop_exit_requested(CPUState *cpu)
|
||||
{
|
||||
return (int32_t)cpu_neg(cpu)->icount_decr.u32 < 0;
|
||||
}
|
||||
|
||||
void cpu_reloading_memory_map(void);
|
||||
/**
|
||||
* cpu_address_space_init:
|
||||
* @cpu: CPU to add this address space to
|
||||
* @asidx: integer index of this address space
|
||||
* @mr: the root memory region of address space
|
||||
*
|
||||
* Add the specified address space to the CPU's cpu_ases list.
|
||||
* The address space added with @asidx 0 is the one used for the
|
||||
* convenience pointer cpu->as.
|
||||
* The target-specific code which registers ASes is responsible
|
||||
* for defining what semantics address space 0, 1, 2, etc have.
|
||||
*
|
||||
* Before the first call to this function, the caller must set
|
||||
* cpu->num_ases to the total number of address spaces it needs
|
||||
* to support.
|
||||
*/
|
||||
void cpu_address_space_init(CPUState *cpu, int asidx, MemoryRegion *mr);
|
||||
|
||||
void tb_invalidate_phys_page_range(struct uc_struct *uc, tb_page_addr_t start, tb_page_addr_t end,
|
||||
int is_cpu_write_access);
|
||||
void tb_invalidate_phys_range(struct uc_struct *uc, tb_page_addr_t start, tb_page_addr_t end,
|
||||
int is_cpu_write_access);
|
||||
#if !defined(CONFIG_USER_ONLY)
|
||||
void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as);
|
||||
/* cputlb.c */
|
||||
/**
|
||||
* tlb_init - initialize a CPU's TLB
|
||||
* @cpu: CPU whose TLB should be initialized
|
||||
*/
|
||||
void tlb_init(CPUState *cpu);
|
||||
/**
|
||||
* tlb_flush_page:
|
||||
* @cpu: CPU whose TLB should be flushed
|
||||
* @addr: virtual address of page to be flushed
|
||||
*
|
||||
* Flush one page from the TLB of the specified CPU, for all
|
||||
* MMU indexes.
|
||||
*/
|
||||
void tlb_flush_page(CPUState *cpu, target_ulong addr);
|
||||
void tlb_flush(CPUState *cpu, int flush_global);
|
||||
/**
|
||||
* tlb_flush_page_all_cpus:
|
||||
* @cpu: src CPU of the flush
|
||||
* @addr: virtual address of page to be flushed
|
||||
*
|
||||
* Flush one page from the TLB of the specified CPU, for all
|
||||
* MMU indexes.
|
||||
*/
|
||||
void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
|
||||
/**
|
||||
* tlb_flush_page_all_cpus_synced:
|
||||
* @cpu: src CPU of the flush
|
||||
* @addr: virtual address of page to be flushed
|
||||
*
|
||||
* Flush one page from the TLB of the specified CPU, for all MMU
|
||||
* indexes like tlb_flush_page_all_cpus except the source vCPUs work
|
||||
* is scheduled as safe work meaning all flushes will be complete once
|
||||
* the source vCPUs safe work is complete. This will depend on when
|
||||
* the guests translation ends the TB.
|
||||
*/
|
||||
void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
|
||||
/**
|
||||
* tlb_flush:
|
||||
* @cpu: CPU whose TLB should be flushed
|
||||
*
|
||||
* Flush the entire TLB for the specified CPU. Most CPU architectures
|
||||
* allow the implementation to drop entries from the TLB at any time
|
||||
* so this is generally safe. If more selective flushing is required
|
||||
* use one of the other functions for efficiency.
|
||||
*/
|
||||
void tlb_flush(CPUState *cpu);
|
||||
/**
|
||||
* tlb_flush_all_cpus:
|
||||
* @cpu: src CPU of the flush
|
||||
*/
|
||||
void tlb_flush_all_cpus(CPUState *src_cpu);
|
||||
/**
|
||||
* tlb_flush_all_cpus_synced:
|
||||
* @cpu: src CPU of the flush
|
||||
*
|
||||
* Like tlb_flush_all_cpus except this except the source vCPUs work is
|
||||
* scheduled as safe work meaning all flushes will be complete once
|
||||
* the source vCPUs safe work is complete. This will depend on when
|
||||
* the guests translation ends the TB.
|
||||
*/
|
||||
void tlb_flush_all_cpus_synced(CPUState *src_cpu);
|
||||
/**
|
||||
* tlb_flush_page_by_mmuidx:
|
||||
* @cpu: CPU whose TLB should be flushed
|
||||
* @addr: virtual address of page to be flushed
|
||||
* @idxmap: bitmap of MMU indexes to flush
|
||||
*
|
||||
* Flush one page from the TLB of the specified CPU, for the specified
|
||||
* MMU indexes.
|
||||
*/
|
||||
void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
|
||||
uint16_t idxmap);
|
||||
/**
|
||||
* tlb_flush_page_by_mmuidx_all_cpus:
|
||||
* @cpu: Originating CPU of the flush
|
||||
* @addr: virtual address of page to be flushed
|
||||
* @idxmap: bitmap of MMU indexes to flush
|
||||
*
|
||||
* Flush one page from the TLB of all CPUs, for the specified
|
||||
* MMU indexes.
|
||||
*/
|
||||
void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
|
||||
uint16_t idxmap);
|
||||
/**
|
||||
* tlb_flush_page_by_mmuidx_all_cpus_synced:
|
||||
* @cpu: Originating CPU of the flush
|
||||
* @addr: virtual address of page to be flushed
|
||||
* @idxmap: bitmap of MMU indexes to flush
|
||||
*
|
||||
* Flush one page from the TLB of all CPUs, for the specified MMU
|
||||
* indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
|
||||
* vCPUs work is scheduled as safe work meaning all flushes will be
|
||||
* complete once the source vCPUs safe work is complete. This will
|
||||
* depend on when the guests translation ends the TB.
|
||||
*/
|
||||
void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
|
||||
uint16_t idxmap);
|
||||
/**
|
||||
* tlb_flush_by_mmuidx:
|
||||
* @cpu: CPU whose TLB should be flushed
|
||||
* @wait: If true ensure synchronisation by exiting the cpu_loop
|
||||
* @idxmap: bitmap of MMU indexes to flush
|
||||
*
|
||||
* Flush all entries from the TLB of the specified CPU, for the specified
|
||||
* MMU indexes.
|
||||
*/
|
||||
void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
|
||||
/**
|
||||
* tlb_flush_by_mmuidx_all_cpus:
|
||||
* @cpu: Originating CPU of the flush
|
||||
* @idxmap: bitmap of MMU indexes to flush
|
||||
*
|
||||
* Flush all entries from all TLBs of all CPUs, for the specified
|
||||
* MMU indexes.
|
||||
*/
|
||||
void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
|
||||
/**
|
||||
* tlb_flush_by_mmuidx_all_cpus_synced:
|
||||
* @cpu: Originating CPU of the flush
|
||||
* @idxmap: bitmap of MMU indexes to flush
|
||||
*
|
||||
* Flush all entries from all TLBs of all CPUs, for the specified
|
||||
* MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
|
||||
* vCPUs work is scheduled as safe work meaning all flushes will be
|
||||
* complete once the source vCPUs safe work is complete. This will
|
||||
* depend on when the guests translation ends the TB.
|
||||
*/
|
||||
void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
|
||||
/**
|
||||
* tlb_set_page_with_attrs:
|
||||
* @cpu: CPU to add this TLB entry for
|
||||
* @vaddr: virtual address of page to add entry for
|
||||
* @paddr: physical address of the page
|
||||
* @attrs: memory transaction attributes
|
||||
* @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
|
||||
* @mmu_idx: MMU index to insert TLB entry for
|
||||
* @size: size of the page in bytes
|
||||
*
|
||||
* Add an entry to this CPU's TLB (a mapping from virtual address
|
||||
* @vaddr to physical address @paddr) with the specified memory
|
||||
* transaction attributes. This is generally called by the target CPU
|
||||
* specific code after it has been called through the tlb_fill()
|
||||
* entry point and performed a successful page table walk to find
|
||||
* the physical address and attributes for the virtual address
|
||||
* which provoked the TLB miss.
|
||||
*
|
||||
* At most one entry for a given virtual address is permitted. Only a
|
||||
* single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
|
||||
* used by tlb_flush_page.
|
||||
*/
|
||||
void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
|
||||
hwaddr paddr, MemTxAttrs attrs,
|
||||
int prot, int mmu_idx, target_ulong size);
|
||||
/* tlb_set_page:
|
||||
*
|
||||
* This function is equivalent to calling tlb_set_page_with_attrs()
|
||||
* with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
|
||||
* as a convenience for CPUs which don't use memory transaction attributes.
|
||||
*/
|
||||
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
|
||||
hwaddr paddr, int prot,
|
||||
int mmu_idx, target_ulong size);
|
||||
void *probe_access(CPUArchState *env, target_ulong addr, int size,
|
||||
MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
|
||||
|
||||
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
|
||||
|
||||
#else
|
||||
static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
|
||||
static inline void *probe_write(CPUArchState *env, target_ulong addr, int size,
|
||||
int mmu_idx, uintptr_t retaddr)
|
||||
{
|
||||
return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
|
||||
}
|
||||
|
||||
static inline void tlb_flush(CPUState *cpu, int flush_global)
|
||||
static inline void *probe_read(CPUArchState *env, target_ulong addr, int size,
|
||||
int mmu_idx, uintptr_t retaddr)
|
||||
{
|
||||
return probe_access(env, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
|
||||
}
|
||||
#endif
|
||||
|
||||
#define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
|
||||
|
||||
#define CODE_GEN_PHYS_HASH_BITS 15
|
||||
#define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
|
||||
/* Estimated block size for TB allocation. */
|
||||
/* ??? The following is based on a 2015 survey of x86_64 host output.
|
||||
Better would seem to be some sort of dynamically sized TB array,
|
||||
adapting to the block sizes actually being produced. */
|
||||
#define CODE_GEN_AVG_BLOCK_SIZE 400
|
||||
|
||||
/* estimated block size for TB allocation */
|
||||
/* XXX: use a per code average code fragment size and modulate it
|
||||
according to the host CPU */
|
||||
#if defined(CONFIG_SOFTMMU)
|
||||
#define CODE_GEN_AVG_BLOCK_SIZE 128
|
||||
#else
|
||||
#define CODE_GEN_AVG_BLOCK_SIZE 64
|
||||
#endif
|
||||
|
||||
#if defined(__arm__) || defined(_ARCH_PPC) \
|
||||
|| defined(__x86_64__) || defined(__i386__) \
|
||||
|| defined(__sparc__) || defined(__aarch64__) \
|
||||
|| defined(__s390x__) || defined(__mips__) \
|
||||
|| defined(CONFIG_TCG_INTERPRETER)
|
||||
#define USE_DIRECT_JUMP
|
||||
#endif
|
||||
/*
|
||||
* Translation Cache-related fields of a TB.
|
||||
* This struct exists just for convenience; we keep track of TB's in a binary
|
||||
* search tree, and the only fields needed to compare TB's in the tree are
|
||||
* @ptr and @size.
|
||||
* Note: the address of search data can be obtained by adding @size to @ptr.
|
||||
*/
|
||||
struct tb_tc {
|
||||
void *ptr; /* pointer to the translated code */
|
||||
size_t size;
|
||||
};
|
||||
|
||||
struct TranslationBlock {
|
||||
target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
|
||||
target_ulong cs_base; /* CS base for this block */
|
||||
uint64_t flags; /* flags defining in which context the code was generated */
|
||||
uint32_t flags; /* flags defining in which context the code was generated */
|
||||
uint16_t size; /* size of target code for this block (1 <=
|
||||
size <= TARGET_PAGE_SIZE) */
|
||||
uint16_t cflags; /* compile flags */
|
||||
#define CF_COUNT_MASK 0x7fff
|
||||
#define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */
|
||||
uint16_t icount;
|
||||
uint32_t cflags; /* compile flags */
|
||||
#define CF_COUNT_MASK 0x00007fff
|
||||
#define CF_LAST_IO 0x00008000 /* Last insn may be an IO access. */
|
||||
#define CF_NOCACHE 0x00010000 /* To be freed after execution */
|
||||
#define CF_USE_ICOUNT 0x00020000
|
||||
#define CF_INVALID 0x00040000 /* TB is stale. Set with @jmp_lock held */
|
||||
#define CF_PARALLEL 0x00080000 /* Generate code for a parallel context */
|
||||
#define CF_CLUSTER_MASK 0xff000000 /* Top 8 bits are cluster ID */
|
||||
#define CF_CLUSTER_SHIFT 24
|
||||
/* cflags' mask for hashing/comparison */
|
||||
#define CF_HASH_MASK \
|
||||
(CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL | CF_CLUSTER_MASK)
|
||||
|
||||
void *tc_ptr; /* pointer to the translated code */
|
||||
/* next matching tb for physical address. */
|
||||
struct TranslationBlock *phys_hash_next;
|
||||
/* Per-vCPU dynamic tracing state used to generate this TB */
|
||||
uint32_t trace_vcpu_dstate;
|
||||
|
||||
struct tb_tc tc;
|
||||
|
||||
/* original tb when cflags has CF_NOCACHE */
|
||||
struct TranslationBlock *orig_tb;
|
||||
/* first and second physical page containing code. The lower bit
|
||||
of the pointer tells the index in page_next[] */
|
||||
struct TranslationBlock *page_next[2];
|
||||
of the pointer tells the index in page_next[].
|
||||
The list is protected by the TB's page('s) lock(s) */
|
||||
uintptr_t page_next[2];
|
||||
tb_page_addr_t page_addr[2];
|
||||
|
||||
/* the following data are used to directly call another TB from
|
||||
the code of this one. */
|
||||
uint16_t tb_next_offset[2]; /* offset of original jump target */
|
||||
#ifdef USE_DIRECT_JUMP
|
||||
uint16_t tb_jmp_offset[2]; /* offset of jump instruction */
|
||||
#else
|
||||
uintptr_t tb_next[2]; /* address of jump generated code */
|
||||
#endif
|
||||
/* list of TBs jumping to this one. This is a circular list using
|
||||
the two least significant bits of the pointers to tell what is
|
||||
the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
|
||||
jmp_first */
|
||||
struct TranslationBlock *jmp_next[2];
|
||||
struct TranslationBlock *jmp_first;
|
||||
uint32_t icount;
|
||||
/* The following data are used to directly call another TB from
|
||||
* the code of this one. This can be done either by emitting direct or
|
||||
* indirect native jump instructions. These jumps are reset so that the TB
|
||||
* just continues its execution. The TB can be linked to another one by
|
||||
* setting one of the jump targets (or patching the jump instruction). Only
|
||||
* two of such jumps are supported.
|
||||
*/
|
||||
uint16_t jmp_reset_offset[2]; /* offset of original jump target */
|
||||
#define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
|
||||
uintptr_t jmp_target_arg[2]; /* target address or offset */
|
||||
|
||||
/*
|
||||
* Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps.
|
||||
* Each TB can have two outgoing jumps, and therefore can participate
|
||||
* in two lists. The list entries are kept in jmp_list_next[2]. The least
|
||||
* significant bit (LSB) of the pointers in these lists is used to encode
|
||||
* which of the two list entries is to be used in the pointed TB.
|
||||
*
|
||||
* List traversals are protected by jmp_lock. The destination TB of each
|
||||
* outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock
|
||||
* can be acquired from any origin TB.
|
||||
*
|
||||
* jmp_dest[] are tagged pointers as well. The LSB is set when the TB is
|
||||
* being invalidated, so that no further outgoing jumps from it can be set.
|
||||
*
|
||||
* jmp_lock also protects the CF_INVALID cflag; a jump must not be chained
|
||||
* to a destination TB that has CF_INVALID set.
|
||||
*/
|
||||
uintptr_t jmp_list_head;
|
||||
uintptr_t jmp_list_next[2];
|
||||
uintptr_t jmp_dest[2];
|
||||
uint32_t hash; // unicorn needs this hash to remove this TB from QHT cache
|
||||
};
|
||||
|
||||
typedef struct TBContext TBContext;
|
||||
// extern bool parallel_cpus;
|
||||
|
||||
struct TBContext {
|
||||
|
||||
TranslationBlock *tbs;
|
||||
TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
|
||||
int nb_tbs;
|
||||
|
||||
/* statistics */
|
||||
int tb_flush_count;
|
||||
int tb_phys_invalidate_count;
|
||||
|
||||
int tb_invalidated_flag;
|
||||
};
|
||||
|
||||
static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
|
||||
/* Hide the atomic_read to make code a little easier on the eyes */
|
||||
static inline uint32_t tb_cflags(const TranslationBlock *tb)
|
||||
{
|
||||
target_ulong tmp;
|
||||
tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
|
||||
return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
|
||||
return tb->cflags;
|
||||
}
|
||||
|
||||
static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
|
||||
/* current cflags for hashing/comparison */
|
||||
static inline uint32_t curr_cflags(void)
|
||||
{
|
||||
target_ulong tmp;
|
||||
tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
|
||||
return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
|
||||
| (tmp & TB_JMP_ADDR_MASK));
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline unsigned int tb_phys_hash_func(tb_page_addr_t pc)
|
||||
{
|
||||
return (pc >> 2) & (CODE_GEN_PHYS_HASH_SIZE - 1);
|
||||
}
|
||||
/* TranslationBlock invalidate API */
|
||||
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
|
||||
void tb_flush(CPUState *cpu);
|
||||
void tb_phys_invalidate(TCGContext *tcg_ctx, TranslationBlock *tb, tb_page_addr_t page_addr);
|
||||
TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
|
||||
target_ulong cs_base, uint32_t flags,
|
||||
uint32_t cf_mask);
|
||||
void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
|
||||
void tb_exec_lock(TCGContext*);
|
||||
void tb_exec_unlock(TCGContext*);
|
||||
|
||||
void tb_free(struct uc_struct *uc, TranslationBlock *tb);
|
||||
void tb_flush(CPUArchState *env);
|
||||
void tb_phys_invalidate(struct uc_struct *uc,
|
||||
TranslationBlock *tb, tb_page_addr_t page_addr);
|
||||
|
||||
#if defined(USE_DIRECT_JUMP)
|
||||
|
||||
#if defined(CONFIG_TCG_INTERPRETER)
|
||||
static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
|
||||
{
|
||||
/* patch the branch destination */
|
||||
*(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
|
||||
/* no need to flush icache explicitly */
|
||||
}
|
||||
#elif defined(_ARCH_PPC)
|
||||
void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
|
||||
#define tb_set_jmp_target1 ppc_tb_set_jmp_target
|
||||
#elif defined(__i386__) || defined(__x86_64__)
|
||||
static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
|
||||
{
|
||||
/* patch the branch destination */
|
||||
stl_le_p((void*)jmp_addr, addr - (jmp_addr + 4));
|
||||
/* no need to flush icache explicitly */
|
||||
}
|
||||
#elif defined(__s390x__)
|
||||
static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
|
||||
{
|
||||
/* patch the branch destination */
|
||||
intptr_t disp = addr - (jmp_addr - 2);
|
||||
stl_be_p((void*)jmp_addr, disp / 2);
|
||||
/* no need to flush icache explicitly */
|
||||
}
|
||||
#elif defined(__aarch64__)
|
||||
void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
|
||||
#define tb_set_jmp_target1 aarch64_tb_set_jmp_target
|
||||
#elif defined(__arm__)
|
||||
static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
|
||||
{
|
||||
#if !QEMU_GNUC_PREREQ(4, 1)
|
||||
register unsigned long _beg __asm ("a1");
|
||||
register unsigned long _end __asm ("a2");
|
||||
register unsigned long _flg __asm ("a3");
|
||||
#endif
|
||||
|
||||
/* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
|
||||
*(uint32_t *)jmp_addr =
|
||||
(*(uint32_t *)jmp_addr & ~0xffffff)
|
||||
| (((addr - (jmp_addr + 8)) >> 2) & 0xffffff);
|
||||
|
||||
#if QEMU_GNUC_PREREQ(4, 1)
|
||||
__builtin___clear_cache((char *) jmp_addr, (char *) jmp_addr + 4);
|
||||
#else
|
||||
/* flush icache */
|
||||
_beg = jmp_addr;
|
||||
_end = jmp_addr + 4;
|
||||
_flg = 0;
|
||||
__asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
|
||||
#endif
|
||||
}
|
||||
#elif defined(__sparc__) || defined(__mips__)
|
||||
void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr);
|
||||
#else
|
||||
#error tb_set_jmp_target1 is missing
|
||||
#endif
|
||||
|
||||
static inline void tb_set_jmp_target(TranslationBlock *tb,
|
||||
int n, uintptr_t addr)
|
||||
{
|
||||
uint16_t offset = tb->tb_jmp_offset[n];
|
||||
tb_set_jmp_target1((uintptr_t)((char*)tb->tc_ptr + offset), addr);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* set the jump target */
|
||||
static inline void tb_set_jmp_target(TranslationBlock *tb,
|
||||
int n, uintptr_t addr)
|
||||
{
|
||||
tb->tb_next[n] = addr;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
static inline void tb_add_jump(TranslationBlock *tb, int n,
|
||||
TranslationBlock *tb_next)
|
||||
{
|
||||
/* NOTE: this test is only needed for thread safety */
|
||||
if (!tb->jmp_next[n]) {
|
||||
/* patch the native jump address */
|
||||
tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr);
|
||||
|
||||
/* add in TB jmp circular list */
|
||||
tb->jmp_next[n] = tb_next->jmp_first;
|
||||
tb_next->jmp_first = (TranslationBlock *)((uintptr_t)(tb) | (n));
|
||||
}
|
||||
}
|
||||
|
||||
/* GETRA is the true target of the return instruction that we'll execute,
|
||||
defined here for simplicity of defining the follow-up macros. */
|
||||
#if defined(CONFIG_TCG_INTERPRETER)
|
||||
extern uintptr_t tci_tb_ptr;
|
||||
# define GETRA() tci_tb_ptr
|
||||
#elif defined(_MSC_VER)
|
||||
/* GETPC is the true target of the return instruction that we'll execute. */
|
||||
#ifdef _MSC_VER
|
||||
#include <intrin.h>
|
||||
# define GETRA() (uintptr_t)_ReturnAddress()
|
||||
# define GETPC() (uintptr_t)_ReturnAddress()
|
||||
#else
|
||||
# define GETRA() \
|
||||
# define GETPC() \
|
||||
((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
|
||||
#endif
|
||||
|
||||
@ -321,59 +407,73 @@ extern uintptr_t tci_tb_ptr;
|
||||
to indicate the compressed mode; subtracting two works around that. It
|
||||
is also the case that there are no host isas that contain a call insn
|
||||
smaller than 4 bytes, so we don't worry about special-casing this. */
|
||||
#if defined(CONFIG_TCG_INTERPRETER)
|
||||
# define GETPC_ADJ 0
|
||||
#define GETPC_ADJ 2
|
||||
|
||||
#if defined(CONFIG_DEBUG_TCG)
|
||||
void assert_no_pages_locked(void);
|
||||
#else
|
||||
# define GETPC_ADJ 2
|
||||
#endif
|
||||
|
||||
#define GETPC() (GETRA() - GETPC_ADJ)
|
||||
|
||||
#if !defined(CONFIG_USER_ONLY)
|
||||
|
||||
void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align));
|
||||
|
||||
struct MemoryRegion *iotlb_to_region(AddressSpace *as, hwaddr index);
|
||||
bool io_mem_read(struct MemoryRegion *mr, hwaddr addr,
|
||||
uint64_t *pvalue, unsigned size);
|
||||
bool io_mem_write(struct MemoryRegion *mr, hwaddr addr,
|
||||
uint64_t value, unsigned size);
|
||||
|
||||
|
||||
void tlb_fill(CPUState *cpu, target_ulong addr, int is_write, int mmu_idx,
|
||||
uintptr_t retaddr);
|
||||
#endif
|
||||
|
||||
#if defined(CONFIG_USER_ONLY)
|
||||
static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
|
||||
static inline void assert_no_pages_locked(void)
|
||||
{
|
||||
return addr;
|
||||
}
|
||||
#else
|
||||
/* cputlb.c */
|
||||
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
|
||||
#endif
|
||||
|
||||
/* vl.c */
|
||||
extern int singlestep;
|
||||
|
||||
/* cpu-exec.c */
|
||||
extern volatile sig_atomic_t exit_request;
|
||||
|
||||
/**
|
||||
* cpu_can_do_io:
|
||||
* @cpu: The CPU for which to check IO.
|
||||
* iotlb_to_section:
|
||||
* @cpu: CPU performing the access
|
||||
* @index: TCG CPU IOTLB entry
|
||||
*
|
||||
* Deterministic execution requires that IO only be performed on the last
|
||||
* instruction of a TB so that interrupts take effect immediately.
|
||||
*
|
||||
* Returns: %true if memory-mapped IO is safe, %false otherwise.
|
||||
* Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
|
||||
* it refers to. @index will have been initially created and returned
|
||||
* by memory_region_section_get_iotlb().
|
||||
*/
|
||||
static inline bool cpu_can_do_io(CPUState *cpu)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
|
||||
hwaddr index, MemTxAttrs attrs);
|
||||
|
||||
void phys_mem_clean(struct uc_struct* uc);
|
||||
static inline void mmap_lock(void) {}
|
||||
static inline void mmap_unlock(void) {}
|
||||
|
||||
/**
|
||||
* get_page_addr_code() - full-system version
|
||||
* @env: CPUArchState
|
||||
* @addr: guest virtual address of guest code
|
||||
*
|
||||
* If we cannot translate and execute from the entire RAM page, or if
|
||||
* the region is not backed by RAM, returns -1. Otherwise, returns the
|
||||
* ram_addr_t corresponding to the guest code at @addr.
|
||||
*
|
||||
* Note: this function can trigger an exception.
|
||||
*/
|
||||
tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr);
|
||||
|
||||
/**
|
||||
* get_page_addr_code_hostp() - full-system version
|
||||
* @env: CPUArchState
|
||||
* @addr: guest virtual address of guest code
|
||||
*
|
||||
* See get_page_addr_code() (full-system version) for documentation on the
|
||||
* return value.
|
||||
*
|
||||
* Sets *@hostp (when @hostp is non-NULL) as follows.
|
||||
* If the return value is -1, sets *@hostp to NULL. Otherwise, sets *@hostp
|
||||
* to the host address where @addr's content is kept.
|
||||
*
|
||||
* Note: this function can trigger an exception.
|
||||
*/
|
||||
tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
|
||||
void **hostp);
|
||||
|
||||
void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
|
||||
void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
|
||||
|
||||
/* exec.c */
|
||||
void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
|
||||
|
||||
MemoryRegionSection *
|
||||
address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
|
||||
hwaddr *xlat, hwaddr *plen,
|
||||
MemTxAttrs attrs, int *prot);
|
||||
hwaddr memory_region_section_get_iotlb(CPUState *cpu,
|
||||
MemoryRegionSection *section);
|
||||
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user