cleanup
This commit is contained in:
@ -26,15 +26,6 @@
|
||||
* THE SOFTWARE.
|
||||
*/
|
||||
|
||||
/* The following block of code temporarily renames the daemon() function so the
|
||||
compiler does not see the warning associated with it in stdlib.h on OSX */
|
||||
#ifdef __APPLE__
|
||||
#define daemon qemu_fake_daemon_function
|
||||
#include <stdlib.h>
|
||||
#undef daemon
|
||||
extern int daemon(int, int);
|
||||
#endif
|
||||
|
||||
#if defined(__linux__) && (defined(__x86_64__) || defined(__arm__))
|
||||
/* Use 2 MiB alignment so transparent hugepages can be used by KVM.
|
||||
Valgrind does not support alignments larger than 1 MiB,
|
||||
@ -69,11 +60,6 @@ extern int daemon(int, int);
|
||||
#include <sys/sysctl.h>
|
||||
#endif
|
||||
|
||||
int qemu_daemon(int nochdir, int noclose)
|
||||
{
|
||||
return daemon(nochdir, noclose);
|
||||
}
|
||||
|
||||
void *qemu_oom_check(void *ptr)
|
||||
{
|
||||
if (ptr == NULL) {
|
||||
|
@ -55,6 +55,7 @@ void qemu_mutex_destroy(QemuMutex *mutex)
|
||||
error_exit(err, __func__);
|
||||
}
|
||||
|
||||
|
||||
void qemu_mutex_lock(QemuMutex *mutex)
|
||||
{
|
||||
int err;
|
||||
@ -64,11 +65,6 @@ void qemu_mutex_lock(QemuMutex *mutex)
|
||||
error_exit(err, __func__);
|
||||
}
|
||||
|
||||
int qemu_mutex_trylock(QemuMutex *mutex)
|
||||
{
|
||||
return pthread_mutex_trylock(&mutex->lock);
|
||||
}
|
||||
|
||||
void qemu_mutex_unlock(QemuMutex *mutex)
|
||||
{
|
||||
int err;
|
||||
@ -114,281 +110,6 @@ void qemu_cond_broadcast(QemuCond *cond)
|
||||
error_exit(err, __func__);
|
||||
}
|
||||
|
||||
void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
|
||||
{
|
||||
int err;
|
||||
|
||||
err = pthread_cond_wait(&cond->cond, &mutex->lock);
|
||||
if (err)
|
||||
error_exit(err, __func__);
|
||||
}
|
||||
|
||||
void qemu_sem_init(QemuSemaphore *sem, int init)
|
||||
{
|
||||
int rc;
|
||||
|
||||
#if defined(__APPLE__) || defined(__NetBSD__)
|
||||
rc = pthread_mutex_init(&sem->lock, NULL);
|
||||
if (rc != 0) {
|
||||
error_exit(rc, __func__);
|
||||
}
|
||||
rc = pthread_cond_init(&sem->cond, NULL);
|
||||
if (rc != 0) {
|
||||
error_exit(rc, __func__);
|
||||
}
|
||||
if (init < 0) {
|
||||
error_exit(EINVAL, __func__);
|
||||
}
|
||||
sem->count = init;
|
||||
#else
|
||||
rc = sem_init(&sem->sem, 0, init);
|
||||
if (rc < 0) {
|
||||
error_exit(errno, __func__);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void qemu_sem_destroy(QemuSemaphore *sem)
|
||||
{
|
||||
int rc;
|
||||
|
||||
#if defined(__APPLE__) || defined(__NetBSD__)
|
||||
rc = pthread_cond_destroy(&sem->cond);
|
||||
if (rc < 0) {
|
||||
error_exit(rc, __func__);
|
||||
}
|
||||
rc = pthread_mutex_destroy(&sem->lock);
|
||||
if (rc < 0) {
|
||||
error_exit(rc, __func__);
|
||||
}
|
||||
#else
|
||||
rc = sem_destroy(&sem->sem);
|
||||
if (rc < 0) {
|
||||
error_exit(errno, __func__);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void qemu_sem_post(QemuSemaphore *sem)
|
||||
{
|
||||
int rc;
|
||||
|
||||
#if defined(__APPLE__) || defined(__NetBSD__)
|
||||
pthread_mutex_lock(&sem->lock);
|
||||
if (sem->count == UINT_MAX) {
|
||||
rc = EINVAL;
|
||||
} else {
|
||||
sem->count++;
|
||||
rc = pthread_cond_signal(&sem->cond);
|
||||
}
|
||||
pthread_mutex_unlock(&sem->lock);
|
||||
if (rc != 0) {
|
||||
error_exit(rc, __func__);
|
||||
}
|
||||
#else
|
||||
rc = sem_post(&sem->sem);
|
||||
if (rc < 0) {
|
||||
error_exit(errno, __func__);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static void compute_abs_deadline(struct timespec *ts, int ms)
|
||||
{
|
||||
struct timeval tv;
|
||||
gettimeofday(&tv, NULL);
|
||||
ts->tv_nsec = tv.tv_usec * 1000 + (ms % 1000) * 1000000;
|
||||
ts->tv_sec = tv.tv_sec + ms / 1000;
|
||||
if (ts->tv_nsec >= 1000000000) {
|
||||
ts->tv_sec++;
|
||||
ts->tv_nsec -= 1000000000;
|
||||
}
|
||||
}
|
||||
|
||||
int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
|
||||
{
|
||||
int rc;
|
||||
struct timespec ts;
|
||||
|
||||
#if defined(__APPLE__) || defined(__NetBSD__)
|
||||
rc = 0;
|
||||
compute_abs_deadline(&ts, ms);
|
||||
pthread_mutex_lock(&sem->lock);
|
||||
while (sem->count == 0) {
|
||||
rc = pthread_cond_timedwait(&sem->cond, &sem->lock, &ts);
|
||||
if (rc == ETIMEDOUT) {
|
||||
break;
|
||||
}
|
||||
if (rc != 0) {
|
||||
error_exit(rc, __func__);
|
||||
}
|
||||
}
|
||||
if (rc != ETIMEDOUT) {
|
||||
--sem->count;
|
||||
}
|
||||
pthread_mutex_unlock(&sem->lock);
|
||||
return (rc == ETIMEDOUT ? -1 : 0);
|
||||
#else
|
||||
if (ms <= 0) {
|
||||
/* This is cheaper than sem_timedwait. */
|
||||
do {
|
||||
rc = sem_trywait(&sem->sem);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
if (rc == -1 && errno == EAGAIN) {
|
||||
return -1;
|
||||
}
|
||||
} else {
|
||||
compute_abs_deadline(&ts, ms);
|
||||
do {
|
||||
rc = sem_timedwait(&sem->sem, &ts);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
if (rc == -1 && errno == ETIMEDOUT) {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
if (rc < 0) {
|
||||
error_exit(errno, __func__);
|
||||
}
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
void qemu_sem_wait(QemuSemaphore *sem)
|
||||
{
|
||||
int rc;
|
||||
|
||||
#if defined(__APPLE__) || defined(__NetBSD__)
|
||||
pthread_mutex_lock(&sem->lock);
|
||||
while (sem->count == 0) {
|
||||
rc = pthread_cond_wait(&sem->cond, &sem->lock);
|
||||
if (rc != 0) {
|
||||
error_exit(rc, __func__);
|
||||
}
|
||||
}
|
||||
--sem->count;
|
||||
pthread_mutex_unlock(&sem->lock);
|
||||
#else
|
||||
do {
|
||||
rc = sem_wait(&sem->sem);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
if (rc < 0) {
|
||||
error_exit(errno, __func__);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef __linux__
|
||||
#define futex(...) syscall(__NR_futex, __VA_ARGS__)
|
||||
|
||||
static inline void futex_wake(QemuEvent *ev, int n)
|
||||
{
|
||||
futex(ev, FUTEX_WAKE, n, NULL, NULL, 0);
|
||||
}
|
||||
|
||||
static inline void futex_wait(QemuEvent *ev, unsigned val)
|
||||
{
|
||||
futex(ev, FUTEX_WAIT, (int) val, NULL, NULL, 0);
|
||||
}
|
||||
#else
|
||||
static inline void futex_wake(QemuEvent *ev, int n)
|
||||
{
|
||||
pthread_mutex_lock(&ev->lock);
|
||||
if (n == 1) {
|
||||
pthread_cond_signal(&ev->cond);
|
||||
} else {
|
||||
pthread_cond_broadcast(&ev->cond);
|
||||
}
|
||||
pthread_mutex_unlock(&ev->lock);
|
||||
}
|
||||
|
||||
static inline void futex_wait(QemuEvent *ev, unsigned val)
|
||||
{
|
||||
pthread_mutex_lock(&ev->lock);
|
||||
if (ev->value == val) {
|
||||
pthread_cond_wait(&ev->cond, &ev->lock);
|
||||
}
|
||||
pthread_mutex_unlock(&ev->lock);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Valid transitions:
|
||||
* - free->set, when setting the event
|
||||
* - busy->set, when setting the event, followed by futex_wake
|
||||
* - set->free, when resetting the event
|
||||
* - free->busy, when waiting
|
||||
*
|
||||
* set->busy does not happen (it can be observed from the outside but
|
||||
* it really is set->free->busy).
|
||||
*
|
||||
* busy->free provably cannot happen; to enforce it, the set->free transition
|
||||
* is done with an OR, which becomes a no-op if the event has concurrently
|
||||
* transitioned to free or busy.
|
||||
*/
|
||||
|
||||
#define EV_SET 0
|
||||
#define EV_FREE 1
|
||||
#define EV_BUSY -1
|
||||
|
||||
void qemu_event_init(QemuEvent *ev, bool init)
|
||||
{
|
||||
#ifndef __linux__
|
||||
pthread_mutex_init(&ev->lock, NULL);
|
||||
pthread_cond_init(&ev->cond, NULL);
|
||||
#endif
|
||||
|
||||
ev->value = (init ? EV_SET : EV_FREE);
|
||||
}
|
||||
|
||||
void qemu_event_destroy(QemuEvent *ev)
|
||||
{
|
||||
#ifndef __linux__
|
||||
pthread_mutex_destroy(&ev->lock);
|
||||
pthread_cond_destroy(&ev->cond);
|
||||
#endif
|
||||
}
|
||||
|
||||
void qemu_event_set(QemuEvent *ev)
|
||||
{
|
||||
if (atomic_mb_read(&ev->value) != EV_SET) {
|
||||
if (atomic_xchg(&ev->value, EV_SET) == EV_BUSY) {
|
||||
/* There were waiters, wake them up. */
|
||||
futex_wake(ev, INT_MAX);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void qemu_event_reset(QemuEvent *ev)
|
||||
{
|
||||
if (atomic_mb_read(&ev->value) == EV_SET) {
|
||||
/*
|
||||
* If there was a concurrent reset (or even reset+wait),
|
||||
* do nothing. Otherwise change EV_SET->EV_FREE.
|
||||
*/
|
||||
atomic_or(&ev->value, EV_FREE);
|
||||
}
|
||||
}
|
||||
|
||||
void qemu_event_wait(QemuEvent *ev)
|
||||
{
|
||||
unsigned value;
|
||||
|
||||
value = atomic_mb_read(&ev->value);
|
||||
if (value != EV_SET) {
|
||||
if (value == EV_FREE) {
|
||||
/*
|
||||
* Leave the event reset and tell qemu_event_set that there
|
||||
* are waiters. No need to retry, because there cannot be
|
||||
* a concurent busy->free transition. After the CAS, the
|
||||
* event will be either set or busy.
|
||||
*/
|
||||
if (atomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
futex_wait(ev, EV_BUSY);
|
||||
}
|
||||
}
|
||||
|
||||
int qemu_thread_create(struct uc_struct *uc, QemuThread *thread, const char *name,
|
||||
void *(*start_routine)(void*),
|
||||
void *arg, int mode)
|
||||
|
@ -53,18 +53,6 @@ void qemu_mutex_lock(QemuMutex *mutex)
|
||||
mutex->owner = GetCurrentThreadId();
|
||||
}
|
||||
|
||||
int qemu_mutex_trylock(QemuMutex *mutex)
|
||||
{
|
||||
int owned;
|
||||
|
||||
owned = TryEnterCriticalSection(&mutex->lock);
|
||||
if (owned) {
|
||||
assert(mutex->owner == 0);
|
||||
mutex->owner = GetCurrentThreadId();
|
||||
}
|
||||
return !owned;
|
||||
}
|
||||
|
||||
void qemu_mutex_unlock(QemuMutex *mutex)
|
||||
{
|
||||
assert(mutex->owner == GetCurrentThreadId());
|
||||
@ -159,103 +147,6 @@ void qemu_cond_broadcast(QemuCond *cond)
|
||||
WaitForSingleObject(cond->continue_event, INFINITE);
|
||||
}
|
||||
|
||||
void qemu_cond_wait(QemuCond *cond, QemuMutex *mutex)
|
||||
{
|
||||
/*
|
||||
* This access is protected under the mutex.
|
||||
*/
|
||||
cond->waiters++;
|
||||
|
||||
/*
|
||||
* Unlock external mutex and wait for signal.
|
||||
* NOTE: we've held mutex locked long enough to increment
|
||||
* waiters count above, so there's no problem with
|
||||
* leaving mutex unlocked before we wait on semaphore.
|
||||
*/
|
||||
qemu_mutex_unlock(mutex);
|
||||
WaitForSingleObject(cond->sema, INFINITE);
|
||||
|
||||
/* Now waiters must rendez-vous with the signaling thread and
|
||||
* let it continue. For cond_broadcast this has heavy contention
|
||||
* and triggers thundering herd. So goes life.
|
||||
*
|
||||
* Decrease waiters count. The mutex is not taken, so we have
|
||||
* to do this atomically.
|
||||
*
|
||||
* All waiters contend for the mutex at the end of this function
|
||||
* until the signaling thread relinquishes it. To ensure
|
||||
* each waiter consumes exactly one slice of the semaphore,
|
||||
* the signaling thread stops until it is told by the last
|
||||
* waiter that it can go on.
|
||||
*/
|
||||
if (InterlockedDecrement(&cond->waiters) == cond->target) {
|
||||
SetEvent(cond->continue_event);
|
||||
}
|
||||
|
||||
qemu_mutex_lock(mutex);
|
||||
}
|
||||
|
||||
void qemu_sem_init(QemuSemaphore *sem, int init)
|
||||
{
|
||||
/* Manual reset. */
|
||||
sem->sema = CreateSemaphore(NULL, init, LONG_MAX, NULL);
|
||||
}
|
||||
|
||||
void qemu_sem_destroy(QemuSemaphore *sem)
|
||||
{
|
||||
CloseHandle(sem->sema);
|
||||
}
|
||||
|
||||
void qemu_sem_post(QemuSemaphore *sem)
|
||||
{
|
||||
ReleaseSemaphore(sem->sema, 1, NULL);
|
||||
}
|
||||
|
||||
int qemu_sem_timedwait(QemuSemaphore *sem, int ms)
|
||||
{
|
||||
int rc = WaitForSingleObject(sem->sema, ms);
|
||||
if (rc == WAIT_OBJECT_0) {
|
||||
return 0;
|
||||
}
|
||||
if (rc != WAIT_TIMEOUT) {
|
||||
error_exit(GetLastError(), __func__);
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
void qemu_sem_wait(QemuSemaphore *sem)
|
||||
{
|
||||
if (WaitForSingleObject(sem->sema, INFINITE) != WAIT_OBJECT_0) {
|
||||
error_exit(GetLastError(), __func__);
|
||||
}
|
||||
}
|
||||
|
||||
void qemu_event_init(QemuEvent *ev, bool init)
|
||||
{
|
||||
/* Manual reset. */
|
||||
ev->event = CreateEvent(NULL, TRUE, init, NULL);
|
||||
}
|
||||
|
||||
void qemu_event_destroy(QemuEvent *ev)
|
||||
{
|
||||
CloseHandle(ev->event);
|
||||
}
|
||||
|
||||
void qemu_event_set(QemuEvent *ev)
|
||||
{
|
||||
SetEvent(ev->event);
|
||||
}
|
||||
|
||||
void qemu_event_reset(QemuEvent *ev)
|
||||
{
|
||||
ResetEvent(ev->event);
|
||||
}
|
||||
|
||||
void qemu_event_wait(QemuEvent *ev)
|
||||
{
|
||||
WaitForSingleObject(ev->event, INFINITE);
|
||||
}
|
||||
|
||||
struct QemuThreadData {
|
||||
/* Passed to win32_start_routine. */
|
||||
void *(*start_routine)(void *);
|
||||
|
Reference in New Issue
Block a user