/* Unicorn Emulator Engine */ /* By Nguyen Anh Quynh , 2015 */ /* Modified for Unicorn Engine by Chen Huitao, 2020 */ #include "uc_priv.h" #include "sysemu/cpus.h" #include "cpu.h" #include "unicorn_common.h" #include "cpu_bits.h" #include #include "unicorn.h" RISCVCPU *cpu_riscv_init(struct uc_struct *uc, const char *cpu_model); static void riscv_set_pc(struct uc_struct *uc, uint64_t address) { RISCV_CPU(uc->cpu)->env.pc = address; } static void riscv_release(void *ctx) { int i; TCGContext *tcg_ctx = (TCGContext *)ctx; RISCVCPU *cpu = (RISCVCPU *)tcg_ctx->uc->cpu; CPUTLBDesc *d = cpu->neg.tlb.d; CPUTLBDescFast *f = cpu->neg.tlb.f; CPUTLBDesc *desc; CPUTLBDescFast *fast; release_common(ctx); for (i = 0; i < NB_MMU_MODES; i++) { desc = &(d[i]); fast = &(f[i]); g_free(desc->iotlb); g_free(fast->table); } } void riscv_reg_reset(struct uc_struct *uc) {} static void reg_read(CPURISCVState *env, unsigned int regid, void *value) { switch (regid) { case UC_RISCV_REG_X0: case UC_RISCV_REG_X1: case UC_RISCV_REG_X2: case UC_RISCV_REG_X3: case UC_RISCV_REG_X4: case UC_RISCV_REG_X5: case UC_RISCV_REG_X6: case UC_RISCV_REG_X7: case UC_RISCV_REG_X8: case UC_RISCV_REG_X9: case UC_RISCV_REG_X10: case UC_RISCV_REG_X11: case UC_RISCV_REG_X12: case UC_RISCV_REG_X13: case UC_RISCV_REG_X14: case UC_RISCV_REG_X15: case UC_RISCV_REG_X16: case UC_RISCV_REG_X17: case UC_RISCV_REG_X18: case UC_RISCV_REG_X19: case UC_RISCV_REG_X20: case UC_RISCV_REG_X21: case UC_RISCV_REG_X22: case UC_RISCV_REG_X23: case UC_RISCV_REG_X24: case UC_RISCV_REG_X25: case UC_RISCV_REG_X26: case UC_RISCV_REG_X27: case UC_RISCV_REG_X28: case UC_RISCV_REG_X29: case UC_RISCV_REG_X30: case UC_RISCV_REG_X31: #ifdef TARGET_RISCV64 *(int64_t *)value = env->gpr[regid - UC_RISCV_REG_X0]; #else *(int32_t *)value = env->gpr[regid - UC_RISCV_REG_X0]; #endif break; case UC_RISCV_REG_PC: #ifdef TARGET_RISCV64 *(int64_t *)value = env->pc; #else *(int32_t *)value = env->pc; #endif break; case UC_RISCV_REG_F0: // "ft0" case UC_RISCV_REG_F1: // "ft1" case UC_RISCV_REG_F2: // "ft2" case UC_RISCV_REG_F3: // "ft3" case UC_RISCV_REG_F4: // "ft4" case UC_RISCV_REG_F5: // "ft5" case UC_RISCV_REG_F6: // "ft6" case UC_RISCV_REG_F7: // "ft7" case UC_RISCV_REG_F8: // "fs0" case UC_RISCV_REG_F9: // "fs1" case UC_RISCV_REG_F10: // "fa0" case UC_RISCV_REG_F11: // "fa1" case UC_RISCV_REG_F12: // "fa2" case UC_RISCV_REG_F13: // "fa3" case UC_RISCV_REG_F14: // "fa4" case UC_RISCV_REG_F15: // "fa5" case UC_RISCV_REG_F16: // "fa6" case UC_RISCV_REG_F17: // "fa7" case UC_RISCV_REG_F18: // "fs2" case UC_RISCV_REG_F19: // "fs3" case UC_RISCV_REG_F20: // "fs4" case UC_RISCV_REG_F21: // "fs5" case UC_RISCV_REG_F22: // "fs6" case UC_RISCV_REG_F23: // "fs7" case UC_RISCV_REG_F24: // "fs8" case UC_RISCV_REG_F25: // "fs9" case UC_RISCV_REG_F26: // "fs10" case UC_RISCV_REG_F27: // "fs11" case UC_RISCV_REG_F28: // "ft8" case UC_RISCV_REG_F29: // "ft9" case UC_RISCV_REG_F30: // "ft10" case UC_RISCV_REG_F31: // "ft11" #ifdef TARGET_RISCV64 *(int64_t *)value = env->fpr[regid - UC_RISCV_REG_F0]; #else *(int32_t *)value = env->fpr[regid - UC_RISCV_REG_F0]; #endif break; default: break; } return; } static void reg_write(CPURISCVState *env, unsigned int regid, const void *value) { switch (regid) { case UC_RISCV_REG_X0: case UC_RISCV_REG_X1: case UC_RISCV_REG_X2: case UC_RISCV_REG_X3: case UC_RISCV_REG_X4: case UC_RISCV_REG_X5: case UC_RISCV_REG_X6: case UC_RISCV_REG_X7: case UC_RISCV_REG_X8: case UC_RISCV_REG_X9: case UC_RISCV_REG_X10: case UC_RISCV_REG_X11: case UC_RISCV_REG_X12: case UC_RISCV_REG_X13: case UC_RISCV_REG_X14: case UC_RISCV_REG_X15: case UC_RISCV_REG_X16: case UC_RISCV_REG_X17: case UC_RISCV_REG_X18: case UC_RISCV_REG_X19: case UC_RISCV_REG_X20: case UC_RISCV_REG_X21: case UC_RISCV_REG_X22: case UC_RISCV_REG_X23: case UC_RISCV_REG_X24: case UC_RISCV_REG_X25: case UC_RISCV_REG_X26: case UC_RISCV_REG_X27: case UC_RISCV_REG_X28: case UC_RISCV_REG_X29: case UC_RISCV_REG_X30: case UC_RISCV_REG_X31: #ifdef TARGET_RISCV64 env->gpr[regid - UC_RISCV_REG_X0] = *(uint64_t *)value; #else env->gpr[regid - UC_RISCV_REG_X0] = *(uint32_t *)value; #endif break; case UC_RISCV_REG_PC: #ifdef TARGET_RISCV64 env->pc = *(uint64_t *)value; #else env->pc = *(uint32_t *)value; #endif break; case UC_RISCV_REG_F0: // "ft0" case UC_RISCV_REG_F1: // "ft1" case UC_RISCV_REG_F2: // "ft2" case UC_RISCV_REG_F3: // "ft3" case UC_RISCV_REG_F4: // "ft4" case UC_RISCV_REG_F5: // "ft5" case UC_RISCV_REG_F6: // "ft6" case UC_RISCV_REG_F7: // "ft7" case UC_RISCV_REG_F8: // "fs0" case UC_RISCV_REG_F9: // "fs1" case UC_RISCV_REG_F10: // "fa0" case UC_RISCV_REG_F11: // "fa1" case UC_RISCV_REG_F12: // "fa2" case UC_RISCV_REG_F13: // "fa3" case UC_RISCV_REG_F14: // "fa4" case UC_RISCV_REG_F15: // "fa5" case UC_RISCV_REG_F16: // "fa6" case UC_RISCV_REG_F17: // "fa7" case UC_RISCV_REG_F18: // "fs2" case UC_RISCV_REG_F19: // "fs3" case UC_RISCV_REG_F20: // "fs4" case UC_RISCV_REG_F21: // "fs5" case UC_RISCV_REG_F22: // "fs6" case UC_RISCV_REG_F23: // "fs7" case UC_RISCV_REG_F24: // "fs8" case UC_RISCV_REG_F25: // "fs9" case UC_RISCV_REG_F26: // "fs10" case UC_RISCV_REG_F27: // "fs11" case UC_RISCV_REG_F28: // "ft8" case UC_RISCV_REG_F29: // "ft9" case UC_RISCV_REG_F30: // "ft10" case UC_RISCV_REG_F31: // "ft11" #ifdef TARGET_RISCV64 env->fpr[regid - UC_RISCV_REG_F0] = *(uint64_t *)value; #else env->fpr[regid - UC_RISCV_REG_F0] = *(uint32_t *)value; #endif break; default: break; } } int riscv_reg_read(struct uc_struct *uc, unsigned int *regs, void **vals, int count) { CPURISCVState *env = &(RISCV_CPU(uc->cpu)->env); int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; void *value = vals[i]; reg_read(env, regid, value); } return 0; } int riscv_reg_write(struct uc_struct *uc, unsigned int *regs, void *const *vals, int count) { CPURISCVState *env = &(RISCV_CPU(uc->cpu)->env); int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; const void *value = vals[i]; reg_write(env, regid, value); if (regid == UC_RISCV_REG_PC) { // force to quit execution and flush TB uc->quit_request = true; uc_emu_stop(uc); } } return 0; } DEFAULT_VISIBILITY #ifdef TARGET_RISCV32 int riscv32_context_reg_read(struct uc_context *ctx, unsigned int *regs, void **vals, int count) #else /* TARGET_RISCV64 */ int riscv64_context_reg_read(struct uc_context *ctx, unsigned int *regs, void **vals, int count) #endif { CPURISCVState *env = (CPURISCVState *)ctx->data; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; void *value = vals[i]; reg_read(env, regid, value); } return 0; } DEFAULT_VISIBILITY #ifdef TARGET_RISCV32 int riscv32_context_reg_write(struct uc_context *ctx, unsigned int *regs, void *const *vals, int count) #else /* TARGET_RISCV64 */ int riscv64_context_reg_write(struct uc_context *ctx, unsigned int *regs, void *const *vals, int count) #endif { CPURISCVState *env = (CPURISCVState *)ctx->data; int i; for (i = 0; i < count; i++) { unsigned int regid = regs[i]; const void *value = vals[i]; reg_write(env, regid, value); } return 0; } static bool riscv_stop_interrupt(struct uc_struct *uc, int intno) { // detect stop exception switch (intno) { default: return false; case RISCV_EXCP_UNICORN_END: return true; case RISCV_EXCP_BREAKPOINT: uc->invalid_error = UC_ERR_EXCEPTION; return true; } } static bool riscv_insn_hook_validate(uint32_t insn_enum) { return false; } static int riscv_cpus_init(struct uc_struct *uc, const char *cpu_model) { RISCVCPU *cpu; cpu = cpu_riscv_init(uc, cpu_model); if (cpu == NULL) { return -1; } return 0; } DEFAULT_VISIBILITY #ifdef TARGET_RISCV32 void riscv32_uc_init(struct uc_struct *uc) #else /* TARGET_RISCV64 */ void riscv64_uc_init(struct uc_struct *uc) #endif { uc->reg_read = riscv_reg_read; uc->reg_write = riscv_reg_write; uc->reg_reset = riscv_reg_reset; uc->release = riscv_release; uc->set_pc = riscv_set_pc; uc->stop_interrupt = riscv_stop_interrupt; uc->insn_hook_validate = riscv_insn_hook_validate; uc->cpus_init = riscv_cpus_init; uc->cpu_context_size = offsetof(CPURISCVState, rdtime_fn); uc_common_init(uc); }