Files
favicon-trap/bindings/rust/src/lib.rs

1028 lines
32 KiB
Rust

//! Bindings for the Unicorn emulator.
//!
//!
//!
//! # Example use
//!
//! ```rust
//!
//! use unicorn_engine::RegisterARM;
//! use unicorn_engine::unicorn_const::{Arch, Mode, Permission, SECOND_SCALE};
//!
//! fn emulate() {
//! let arm_code32 = [0x17, 0x00, 0x40, 0xe2]; // sub r0, #23
//!
//! let mut emu = unicorn_engine::Unicorn::new(Arch::ARM, Mode::LITTLE_ENDIAN).expect("failed to initialize Unicorn instance");
//! emu.mem_map(0x1000, 0x4000, Permission::ALL).expect("failed to map code page");
//! emu.mem_write(0x1000, &arm_code32).expect("failed to write instructions");
//!
//! emu.reg_write(RegisterARM::R0, 123).expect("failed write R0");
//! emu.reg_write(RegisterARM::R5, 1337).expect("failed write R5");
//!
//! emu.emu_start(0x1000, (0x1000 + arm_code32.len()) as u64, 10 * SECOND_SCALE, 1000).unwrap();
//! assert_eq!(emu.reg_read(RegisterARM::R0), Ok(100));
//! assert_eq!(emu.reg_read(RegisterARM::R5), Ok(1337));
//! }
//! ```
//!
#![no_std]
#[macro_use]
extern crate alloc;
pub mod unicorn_const;
mod arm;
mod arm64;
mod ffi;
mod m68k;
mod mips;
mod ppc;
mod riscv;
mod sparc;
mod x86;
pub use crate::{
arm::*, arm64::*, m68k::*, mips::*, ppc::*, riscv::*, sparc::*, unicorn_const::*, x86::*,
};
use alloc::{boxed::Box, rc::Rc, vec::Vec};
use core::{cell::UnsafeCell, ptr};
use ffi::uc_handle;
use libc::c_void;
use unicorn_const::{uc_error, Arch, HookType, MemRegion, MemType, Mode, Permission, Query};
#[derive(Debug)]
pub struct Context {
context: ffi::uc_context,
}
impl Context {
#[must_use]
pub fn is_initialized(&self) -> bool {
!self.context.is_null()
}
}
impl Drop for Context {
fn drop(&mut self) {
if self.is_initialized() {
unsafe {
ffi::uc_context_free(self.context);
}
}
self.context = ptr::null_mut();
}
}
pub struct MmioCallbackScope<'a> {
pub regions: Vec<(u64, usize)>,
pub read_callback: Option<Box<dyn ffi::IsUcHook<'a> + 'a>>,
pub write_callback: Option<Box<dyn ffi::IsUcHook<'a> + 'a>>,
}
impl<'a> MmioCallbackScope<'a> {
fn has_regions(&self) -> bool {
!self.regions.is_empty()
}
fn unmap(&mut self, begin: u64, size: usize) {
let end: u64 = begin + size as u64;
self.regions = self
.regions
.iter()
.flat_map(|(b, s)| {
let e: u64 = b + *s as u64;
if begin > *b {
if begin >= e {
// The unmapped region is completely after this region
vec![(*b, *s)]
} else if end >= e {
// The unmapped region overlaps with the end of this region
vec![(*b, (begin - *b) as usize)]
} else {
// The unmapped region is in the middle of this region
let second_b = end + 1;
vec![
(*b, (begin - *b) as usize),
(second_b, (e - second_b) as usize),
]
}
} else if end > *b {
if end >= e {
// The unmapped region completely contains this region
vec![]
} else {
// The unmapped region overlaps with the start of this region
vec![(end, (e - end) as usize)]
}
} else {
// The unmapped region is completely before this region
vec![(*b, *s)]
}
})
.collect();
}
}
pub struct UnicornInner<'a, D> {
pub handle: uc_handle,
pub ffi: bool,
pub arch: Arch,
/// to keep ownership over the hook for this uc instance's lifetime
pub hooks: Vec<(ffi::uc_hook, Box<dyn ffi::IsUcHook<'a> + 'a>)>,
/// To keep ownership over the mmio callbacks for this uc instance's lifetime
pub mmio_callbacks: Vec<MmioCallbackScope<'a>>,
pub data: D,
}
/// Drop UC
impl<'a, D> Drop for UnicornInner<'a, D> {
fn drop(&mut self) {
if !self.ffi && !self.handle.is_null() {
unsafe { ffi::uc_close(self.handle) };
}
self.handle = ptr::null_mut();
}
}
/// A Unicorn emulator instance.
pub struct Unicorn<'a, D: 'a> {
inner: Rc<UnsafeCell<UnicornInner<'a, D>>>,
}
impl<'a> Unicorn<'a, ()> {
/// Create a new instance of the unicorn engine for the specified architecture
/// and hardware mode.
pub fn new(arch: Arch, mode: Mode) -> Result<Unicorn<'a, ()>, uc_error> {
Self::new_with_data(arch, mode, ())
}
}
impl<'a> TryFrom<uc_handle> for Unicorn<'a, ()> {
type Error = uc_error;
fn try_from(handle: uc_handle) -> Result<Unicorn<'a, ()>, uc_error> {
if handle == ptr::null_mut() {
return Err(uc_error::HANDLE);
}
let mut arch: libc::size_t = Default::default();
let err = unsafe { ffi::uc_query(handle, Query::ARCH, &mut arch) };
if err != uc_error::OK {
return Err(err);
}
Ok(Unicorn {
inner: Rc::new(UnsafeCell::from(UnicornInner {
handle,
ffi: true,
arch: arch.try_into()?,
data: (),
hooks: vec![],
mmio_callbacks: vec![],
})),
})
}
}
impl<'a, D> Unicorn<'a, D>
where
D: 'a,
{
/// Create a new instance of the unicorn engine for the specified architecture
/// and hardware mode.
pub fn new_with_data(arch: Arch, mode: Mode, data: D) -> Result<Unicorn<'a, D>, uc_error> {
let mut handle = core::ptr::null_mut();
let err = unsafe { ffi::uc_open(arch, mode, &mut handle) };
if err == uc_error::OK {
Ok(Unicorn {
inner: Rc::new(UnsafeCell::from(UnicornInner {
handle,
ffi: false,
arch,
data,
hooks: vec![],
mmio_callbacks: vec![],
})),
})
} else {
Err(err)
}
}
}
impl<'a, D> core::fmt::Debug for Unicorn<'a, D> {
fn fmt(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(formatter, "Unicorn {{ uc: {:p} }}", self.get_handle())
}
}
impl<'a, D> Unicorn<'a, D> {
fn inner(&self) -> &UnicornInner<'a, D> {
unsafe { self.inner.get().as_ref().unwrap() }
}
fn inner_mut(&mut self) -> &mut UnicornInner<'a, D> {
unsafe { self.inner.get().as_mut().unwrap() }
}
/// Return whatever data was passed during initialization.
///
/// For an example, have a look at `utils::init_emu_with_heap` where
/// a struct is passed which is used for a custom allocator.
#[must_use]
pub fn get_data(&self) -> &D {
&self.inner().data
}
/// Return a mutable reference to whatever data was passed during initialization.
#[must_use]
pub fn get_data_mut(&mut self) -> &mut D {
&mut self.inner_mut().data
}
/// Return the architecture of the current emulator.
#[must_use]
pub fn get_arch(&self) -> Arch {
self.inner().arch
}
/// Return the handle of the current emulator.
#[must_use]
pub fn get_handle(&self) -> uc_handle {
self.inner().handle
}
/// Returns a vector with the memory regions that are mapped in the emulator.
pub fn mem_regions(&self) -> Result<Vec<MemRegion>, uc_error> {
let mut nb_regions: u32 = 0;
let p_regions: *const MemRegion = core::ptr::null_mut();
let err = unsafe { ffi::uc_mem_regions(self.get_handle(), &p_regions, &mut nb_regions) };
if err == uc_error::OK {
let mut regions = Vec::new();
for i in 0..nb_regions {
regions.push(unsafe { core::mem::transmute_copy(&*p_regions.add(i as usize)) });
}
unsafe { libc::free(p_regions as _) };
Ok(regions)
} else {
Err(err)
}
}
/// Read a range of bytes from memory at the specified address.
pub fn mem_read(&self, address: u64, buf: &mut [u8]) -> Result<(), uc_error> {
let err =
unsafe { ffi::uc_mem_read(self.get_handle(), address, buf.as_mut_ptr(), buf.len()) };
if err == uc_error::OK {
Ok(())
} else {
Err(err)
}
}
/// Return a range of bytes from memory at the specified address as vector.
pub fn mem_read_as_vec(&self, address: u64, size: usize) -> Result<Vec<u8>, uc_error> {
let mut buf = vec![0; size];
let err = unsafe { ffi::uc_mem_read(self.get_handle(), address, buf.as_mut_ptr(), size) };
if err == uc_error::OK {
Ok(buf)
} else {
Err(err)
}
}
pub fn mem_write(&mut self, address: u64, bytes: &[u8]) -> Result<(), uc_error> {
let err =
unsafe { ffi::uc_mem_write(self.get_handle(), address, bytes.as_ptr(), bytes.len()) };
if err == uc_error::OK {
Ok(())
} else {
Err(err)
}
}
/// Map an existing memory region in the emulator at the specified address.
///
/// # Safety
///
/// This function is marked unsafe because it is the responsibility of the caller to
/// ensure that `size` matches the size of the passed buffer, an invalid `size` value will
/// likely cause a crash in unicorn.
///
/// `address` must be aligned to 4kb or this will return `Error::ARG`.
///
/// `size` must be a multiple of 4kb or this will return `Error::ARG`.
///
/// `ptr` is a pointer to the provided memory region that will be used by the emulator.
pub unsafe fn mem_map_ptr(
&mut self,
address: u64,
size: usize,
perms: Permission,
ptr: *mut c_void,
) -> Result<(), uc_error> {
let err = ffi::uc_mem_map_ptr(self.get_handle(), address, size, perms.bits(), ptr);
if err == uc_error::OK {
Ok(())
} else {
Err(err)
}
}
/// Map a memory region in the emulator at the specified address.
///
/// `address` must be aligned to 4kb or this will return `Error::ARG`.
/// `size` must be a multiple of 4kb or this will return `Error::ARG`.
pub fn mem_map(
&mut self,
address: u64,
size: libc::size_t,
perms: Permission,
) -> Result<(), uc_error> {
let err = unsafe { ffi::uc_mem_map(self.get_handle(), address, size, perms.bits()) };
if err == uc_error::OK {
Ok(())
} else {
Err(err)
}
}
/// Map in am MMIO region backed by callbacks.
///
/// `address` must be aligned to 4kb or this will return `Error::ARG`.
/// `size` must be a multiple of 4kb or this will return `Error::ARG`.
pub fn mmio_map<R: 'a, W: 'a>(
&mut self,
address: u64,
size: libc::size_t,
read_callback: Option<R>,
write_callback: Option<W>,
) -> Result<(), uc_error>
where
R: FnMut(&mut Unicorn<D>, u64, usize) -> u64,
W: FnMut(&mut Unicorn<D>, u64, usize, u64),
{
let mut read_data = read_callback.map(|c| {
Box::new(ffi::UcHook {
callback: c,
uc: Unicorn {
inner: self.inner.clone(),
},
})
});
let mut write_data = write_callback.map(|c| {
Box::new(ffi::UcHook {
callback: c,
uc: Unicorn {
inner: self.inner.clone(),
},
})
});
let err = unsafe {
ffi::uc_mmio_map(
self.get_handle(),
address,
size,
ffi::mmio_read_callback_proxy::<D, R> as _,
match read_data {
Some(ref mut d) => d.as_mut() as *mut _ as _,
None => ptr::null_mut(),
},
ffi::mmio_write_callback_proxy::<D, W> as _,
match write_data {
Some(ref mut d) => d.as_mut() as *mut _ as _,
None => ptr::null_mut(),
},
)
};
if err == uc_error::OK {
let rd = read_data.map(|c| c as Box<dyn ffi::IsUcHook>);
let wd = write_data.map(|c| c as Box<dyn ffi::IsUcHook>);
self.inner_mut().mmio_callbacks.push(MmioCallbackScope {
regions: vec![(address, size)],
read_callback: rd,
write_callback: wd,
});
Ok(())
} else {
Err(err)
}
}
/// Map in a read-only MMIO region backed by a callback.
///
/// `address` must be aligned to 4kb or this will return `Error::ARG`.
/// `size` must be a multiple of 4kb or this will return `Error::ARG`.
pub fn mmio_map_ro<F: 'a>(
&mut self,
address: u64,
size: libc::size_t,
callback: F,
) -> Result<(), uc_error>
where
F: FnMut(&mut Unicorn<D>, u64, usize) -> u64,
{
self.mmio_map(
address,
size,
Some(callback),
None::<fn(&mut Unicorn<D>, u64, usize, u64)>,
)
}
/// Map in a write-only MMIO region backed by a callback.
///
/// `address` must be aligned to 4kb or this will return `Error::ARG`.
/// `size` must be a multiple of 4kb or this will return `Error::ARG`.
pub fn mmio_map_wo<F: 'a>(
&mut self,
address: u64,
size: libc::size_t,
callback: F,
) -> Result<(), uc_error>
where
F: FnMut(&mut Unicorn<D>, u64, usize, u64),
{
self.mmio_map(
address,
size,
None::<fn(&mut Unicorn<D>, u64, usize) -> u64>,
Some(callback),
)
}
/// Unmap a memory region.
///
/// `address` must be aligned to 4kb or this will return `Error::ARG`.
/// `size` must be a multiple of 4kb or this will return `Error::ARG`.
pub fn mem_unmap(&mut self, address: u64, size: libc::size_t) -> Result<(), uc_error> {
let err = unsafe { ffi::uc_mem_unmap(self.get_handle(), address, size) };
self.mmio_unmap(address, size);
if err == uc_error::OK {
Ok(())
} else {
Err(err)
}
}
fn mmio_unmap(&mut self, address: u64, size: libc::size_t) {
for scope in self.inner_mut().mmio_callbacks.iter_mut() {
scope.unmap(address, size);
}
self.inner_mut()
.mmio_callbacks
.retain(|scope| scope.has_regions());
}
/// Set the memory permissions for an existing memory region.
///
/// `address` must be aligned to 4kb or this will return `Error::ARG`.
/// `size` must be a multiple of 4kb or this will return `Error::ARG`.
pub fn mem_protect(
&mut self,
address: u64,
size: libc::size_t,
perms: Permission,
) -> Result<(), uc_error> {
let err = unsafe { ffi::uc_mem_protect(self.get_handle(), address, size, perms.bits()) };
if err == uc_error::OK {
Ok(())
} else {
Err(err)
}
}
/// Write an unsigned value from a register.
pub fn reg_write<T: Into<i32>>(&mut self, regid: T, value: u64) -> Result<(), uc_error> {
let err =
unsafe { ffi::uc_reg_write(self.get_handle(), regid.into(), &value as *const _ as _) };
if err == uc_error::OK {
Ok(())
} else {
Err(err)
}
}
/// Write variable sized values into registers.
///
/// The user has to make sure that the buffer length matches the register size.
/// This adds support for registers >64 bit (GDTR/IDTR, XMM, YMM, ZMM (x86); Q, V (arm64)).
pub fn reg_write_long<T: Into<i32>>(&self, regid: T, value: &[u8]) -> Result<(), uc_error> {
let err = unsafe { ffi::uc_reg_write(self.get_handle(), regid.into(), value.as_ptr() as _) };
if err == uc_error::OK {
Ok(())
} else {
Err(err)
}
}
/// Read an unsigned value from a register.
///
/// Not to be used with registers larger than 64 bit.
pub fn reg_read<T: Into<i32>>(&self, regid: T) -> Result<u64, uc_error> {
let mut value: u64 = 0;
let err =
unsafe { ffi::uc_reg_read(self.get_handle(), regid.into(), &mut value as *mut u64 as _) };
if err == uc_error::OK {
Ok(value)
} else {
Err(err)
}
}
/// Read 128, 256 or 512 bit register value into heap allocated byte array.
///
/// This adds safe support for registers >64 bit (GDTR/IDTR, XMM, YMM, ZMM, ST (x86); Q, V (arm64)).
pub fn reg_read_long<T: Into<i32>>(&self, regid: T) -> Result<Box<[u8]>, uc_error> {
let err: uc_error;
let boxed: Box<[u8]>;
let mut value: Vec<u8>;
let curr_reg_id = regid.into();
let curr_arch = self.get_arch();
if curr_arch == Arch::X86 {
if curr_reg_id >= x86::RegisterX86::XMM0 as i32
&& curr_reg_id <= x86::RegisterX86::XMM31 as i32
{
value = vec![0; 16];
} else if curr_reg_id >= x86::RegisterX86::YMM0 as i32
&& curr_reg_id <= x86::RegisterX86::YMM31 as i32
{
value = vec![0; 32];
} else if curr_reg_id >= x86::RegisterX86::ZMM0 as i32
&& curr_reg_id <= x86::RegisterX86::ZMM31 as i32
{
value = vec![0; 64];
} else if curr_reg_id == x86::RegisterX86::GDTR as i32
|| curr_reg_id == x86::RegisterX86::IDTR as i32
|| (curr_reg_id >= x86::RegisterX86::ST0 as i32
&& curr_reg_id <= x86::RegisterX86::ST7 as i32)
{
value = vec![0; 10]; // 64 bit base address in IA-32e mode
} else {
return Err(uc_error::ARG);
}
} else if curr_arch == Arch::ARM64 {
if (curr_reg_id >= arm64::RegisterARM64::Q0 as i32
&& curr_reg_id <= arm64::RegisterARM64::Q31 as i32)
|| (curr_reg_id >= arm64::RegisterARM64::V0 as i32
&& curr_reg_id <= arm64::RegisterARM64::V31 as i32)
{
value = vec![0; 16];
} else {
return Err(uc_error::ARG);
}
} else {
return Err(uc_error::ARCH);
}
err = unsafe { ffi::uc_reg_read(self.get_handle(), curr_reg_id, value.as_mut_ptr() as _) };
if err == uc_error::OK {
boxed = value.into_boxed_slice();
Ok(boxed)
} else {
Err(err)
}
}
/// Read a signed 32-bit value from a register.
pub fn reg_read_i32<T: Into<i32>>(&self, regid: T) -> Result<i32, uc_error> {
let mut value: i32 = 0;
let err =
unsafe { ffi::uc_reg_read(self.get_handle(), regid.into(), &mut value as *mut i32 as _) };
if err == uc_error::OK {
Ok(value)
} else {
Err(err)
}
}
/// Add a code hook.
pub fn add_code_hook<F: 'a>(
&mut self,
begin: u64,
end: u64,
callback: F,
) -> Result<ffi::uc_hook, uc_error>
where
F: FnMut(&mut crate::Unicorn<D>, u64, u32) + 'a,
{
let mut hook_ptr = core::ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Unicorn {
inner: self.inner.clone(),
},
});
let err = unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_ptr,
HookType::CODE,
ffi::code_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
begin,
end,
)
};
if err == uc_error::OK {
self.inner_mut().hooks.push((hook_ptr, user_data));
Ok(hook_ptr)
} else {
Err(err)
}
}
/// Add a block hook.
pub fn add_block_hook<F: 'a>(&mut self, callback: F) -> Result<ffi::uc_hook, uc_error>
where
F: FnMut(&mut Unicorn<D>, u64, u32),
{
let mut hook_ptr = core::ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Unicorn {
inner: self.inner.clone(),
},
});
let err = unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_ptr,
HookType::BLOCK,
ffi::block_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
1,
0,
)
};
if err == uc_error::OK {
self.inner_mut().hooks.push((hook_ptr, user_data));
Ok(hook_ptr)
} else {
Err(err)
}
}
/// Add a memory hook.
pub fn add_mem_hook<F: 'a>(
&mut self,
hook_type: HookType,
begin: u64,
end: u64,
callback: F,
) -> Result<ffi::uc_hook, uc_error>
where
F: FnMut(&mut Unicorn<D>, MemType, u64, usize, i64) -> bool,
{
if !(HookType::MEM_ALL | HookType::MEM_READ_AFTER).contains(hook_type) {
return Err(uc_error::ARG);
}
let mut hook_ptr = core::ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Unicorn {
inner: self.inner.clone(),
},
});
let err = unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_ptr,
hook_type,
ffi::mem_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
begin,
end,
)
};
if err == uc_error::OK {
self.inner_mut().hooks.push((hook_ptr, user_data));
Ok(hook_ptr)
} else {
Err(err)
}
}
/// Add an interrupt hook.
pub fn add_intr_hook<F: 'a>(&mut self, callback: F) -> Result<ffi::uc_hook, uc_error>
where
F: FnMut(&mut Unicorn<D>, u32),
{
let mut hook_ptr = core::ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Unicorn {
inner: self.inner.clone(),
},
});
let err = unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_ptr,
HookType::INTR,
ffi::intr_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
0,
0,
)
};
if err == uc_error::OK {
self.inner_mut().hooks.push((hook_ptr, user_data));
Ok(hook_ptr)
} else {
Err(err)
}
}
/// Add hook for x86 IN instruction.
pub fn add_insn_in_hook<F: 'a>(&mut self, callback: F) -> Result<ffi::uc_hook, uc_error>
where
F: FnMut(&mut Unicorn<D>, u32, usize),
{
let mut hook_ptr = core::ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Unicorn {
inner: self.inner.clone(),
},
});
let err = unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_ptr,
HookType::INSN,
ffi::insn_in_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
0,
0,
x86::InsnX86::IN,
)
};
if err == uc_error::OK {
self.inner_mut().hooks.push((hook_ptr, user_data));
Ok(hook_ptr)
} else {
Err(err)
}
}
/// Add hook for x86 OUT instruction.
pub fn add_insn_out_hook<F: 'a>(&mut self, callback: F) -> Result<ffi::uc_hook, uc_error>
where
F: FnMut(&mut Unicorn<D>, u32, usize, u32),
{
let mut hook_ptr = core::ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Unicorn {
inner: self.inner.clone(),
},
});
let err = unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_ptr,
HookType::INSN,
ffi::insn_out_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
0,
0,
x86::InsnX86::OUT,
)
};
if err == uc_error::OK {
self.inner_mut().hooks.push((hook_ptr, user_data));
Ok(hook_ptr)
} else {
Err(err)
}
}
/// Add hook for x86 SYSCALL or SYSENTER.
pub fn add_insn_sys_hook<F>(
&mut self,
insn_type: x86::InsnSysX86,
begin: u64,
end: u64,
callback: F,
) -> Result<ffi::uc_hook, uc_error>
where
F: FnMut(&mut Unicorn<D>) + 'a,
{
let mut hook_ptr = core::ptr::null_mut();
let mut user_data = Box::new(ffi::UcHook {
callback,
uc: Unicorn {
inner: self.inner.clone(),
},
});
let err = unsafe {
ffi::uc_hook_add(
self.get_handle(),
&mut hook_ptr,
HookType::INSN,
ffi::insn_sys_hook_proxy::<D, F> as _,
user_data.as_mut() as *mut _ as _,
begin,
end,
insn_type,
)
};
if err == uc_error::OK {
self.inner_mut().hooks.push((hook_ptr, user_data));
Ok(hook_ptr)
} else {
Err(err)
}
}
/// Remove a hook.
///
/// `hook` is the value returned by `add_*_hook` functions.
pub fn remove_hook(&mut self, hook: ffi::uc_hook) -> Result<(), uc_error> {
let err: uc_error;
// drop the hook
let inner = self.inner_mut();
inner
.hooks
.retain(|(hook_ptr, _hook_impl)| hook_ptr != &hook);
err = unsafe { ffi::uc_hook_del(inner.handle, hook) };
if err == uc_error::OK {
Ok(())
} else {
Err(err)
}
}
/// Allocate and return an empty Unicorn context.
///
/// To be populated via `context_save`.
pub fn context_alloc(&self) -> Result<Context, uc_error> {
let mut empty_context: ffi::uc_context = ptr::null_mut();
let err = unsafe { ffi::uc_context_alloc(self.get_handle(), &mut empty_context) };
if err == uc_error::OK {
Ok(Context {
context: empty_context,
})
} else {
Err(err)
}
}
/// Save current Unicorn context to previously allocated Context struct.
pub fn context_save(&self, context: &mut Context) -> Result<(), uc_error> {
let err = unsafe { ffi::uc_context_save(self.get_handle(), context.context) };
if err == uc_error::OK {
Ok(())
} else {
Err(err)
}
}
/// Allocate and return a Context struct initialized with the current CPU context.
///
/// This can be used for fast rollbacks with `context_restore`.
/// In case of many non-concurrent context saves, use `context_alloc` and *_save
/// individually to avoid unnecessary allocations.
pub fn context_init(&self) -> Result<Context, uc_error> {
let mut new_context: ffi::uc_context = ptr::null_mut();
let err = unsafe { ffi::uc_context_alloc(self.get_handle(), &mut new_context) };
if err != uc_error::OK {
return Err(err);
}
let err = unsafe { ffi::uc_context_save(self.get_handle(), new_context) };
if err == uc_error::OK {
Ok(Context {
context: new_context,
})
} else {
unsafe { ffi::uc_context_free(new_context) };
Err(err)
}
}
/// Restore a previously saved Unicorn context.
///
/// Perform a quick rollback of the CPU context, including registers and some
/// internal metadata. Contexts may not be shared across engine instances with
/// differing arches or modes. Memory has to be restored manually, if needed.
pub fn context_restore(&self, context: &Context) -> Result<(), uc_error> {
let err = unsafe { ffi::uc_context_restore(self.get_handle(), context.context) };
if err == uc_error::OK {
Ok(())
} else {
Err(err)
}
}
/// Emulate machine code for a specified duration.
///
/// `begin` is the address where to start the emulation. The emulation stops if `until`
/// is hit. `timeout` specifies a duration in microseconds after which the emulation is
/// stopped (infinite execution if set to 0). `count` is the maximum number of instructions
/// to emulate (emulate all the available instructions if set to 0).
pub fn emu_start(
&mut self,
begin: u64,
until: u64,
timeout: u64,
count: usize,
) -> Result<(), uc_error> {
unsafe {
let err = ffi::uc_emu_start(self.get_handle(), begin, until, timeout, count as _);
if err == uc_error::OK {
Ok(())
} else {
Err(err)
}
}
}
/// Stop the emulation.
///
/// This is usually called from callback function in hooks.
/// NOTE: For now, this will stop the execution only after the current block.
pub fn emu_stop(&mut self) -> Result<(), uc_error> {
let err = unsafe { ffi::uc_emu_stop(self.get_handle()) };
if err == uc_error::OK {
Ok(())
} else {
Err(err)
}
}
/// Query the internal status of the engine.
///
/// supported: `MODE`, `PAGE_SIZE`, `ARCH`
pub fn query(&self, query: Query) -> Result<usize, uc_error> {
let mut result: libc::size_t = Default::default();
let err = unsafe { ffi::uc_query(self.get_handle(), query, &mut result) };
if err == uc_error::OK {
Ok(result)
} else {
Err(err)
}
}
/// Gets the current program counter for this `unicorn` instance.
#[inline]
pub fn pc_read(&self) -> Result<u64, uc_error> {
let arch = self.get_arch();
let reg = match arch {
Arch::X86 => RegisterX86::RIP as i32,
Arch::ARM => RegisterARM::PC as i32,
Arch::ARM64 => RegisterARM64::PC as i32,
Arch::MIPS => RegisterMIPS::PC as i32,
Arch::SPARC => RegisterSPARC::PC as i32,
Arch::M68K => RegisterM68K::PC as i32,
Arch::PPC => RegisterPPC::PC as i32,
Arch::RISCV => RegisterRISCV::PC as i32,
Arch::MAX => panic!("Illegal Arch specified"),
};
self.reg_read(reg)
}
/// Sets the program counter for this `unicorn` instance.
#[inline]
pub fn set_pc(&mut self, value: u64) -> Result<(), uc_error> {
let arch = self.get_arch();
let reg = match arch {
Arch::X86 => RegisterX86::RIP as i32,
Arch::ARM => RegisterARM::PC as i32,
Arch::ARM64 => RegisterARM64::PC as i32,
Arch::MIPS => RegisterMIPS::PC as i32,
Arch::SPARC => RegisterSPARC::PC as i32,
Arch::M68K => RegisterM68K::PC as i32,
Arch::PPC => RegisterPPC::PC as i32,
Arch::RISCV => RegisterRISCV::PC as i32,
Arch::MAX => panic!("Illegal Arch specified"),
};
self.reg_write(reg, value)
}
}